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Abstract

Bayesian Distance Prior in LISA Gravitational Wave Data Analysis

Michael Tauraso

Chair of the Supervisory Committee:
Professor Marilena Loverde
Department of Physics

The Laser Interferometer Space Antenna (LISA) mission is expected to detect many Ultra-

Compact Binaries (UCBs) in the Milky Way galaxy. In order to link these observations

to existing models of star formation and evolution, the spatial distribution of UCBs is an

important target for LISA data analysis. In this work GBMCMC, an existing code that finds

UCBs in LISA data, is extended to incorporate a Bayesian prior on the distance to UCBs

from Earth using a simple model of the Milky Way. The effectiveness of this approach is

analyzed using simulated data from the LISA Data Challenge.
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Chapter 1

BACKGROUND

The Laser Interferometer Space Antenna (LISA) is a planned gravitational wave obser-

vatory slated to launch in the coming decades. Unlike existing ground based observatories,

LISA will be most sensitive in the milli-Hertz (mHz) frequency band[2]. Current astrophysics

predicts several types of sources which will produce gravitational waves (GWs) in this fre-

quency band, among them ultra-compact binaries, Extreme Mass Ratio In-spirals (EMRIs),

and massive black hole binaries.

The LISA data will contain overlapping mHz gravitational wave signals from throughout

the universe. This situation presents a data analysis problem, where observational results

from LISA are dependent on the capacity to separate out the signals for individual GW

sources. The vast majority of these signals overlap in time and frequency space. This

problem has been called the “cocktail party problem” in reference to similar difficulty of

separating several overlapping conversations in a crowded room[3].

Ultra-compact binary systems (UCBs) are expected to be the most prolific, with poten-

tially millions of objects contributing to the LISA interferometer signal. UCBs are primarily

white dwarf pairs; however, those detectable by LISA may be made up of other stellar rem-

nants or even variable stars orbiting closely with a compact companion, such as AM Canum

Venaticorm (AMCVn) stars. For LISA, the vast majority of UCB systems are expected

to be continuous sources of GWs, with a similar template waveform. Out of the millions

contributing to the interferometer signal, approximately O(104) sources are expected to be

individually detectable[16].

In addition to detecting UCBs, LISA will be sensitive to several other classes of object,
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and be able to perform some consistency checks on general relativity. Because GWs from all

sources and source types will be mixed together in the LISA signal, it is critical that UCB

signals are well characterized, because they represent a significant confusion background for

other science goals. In order to gain this accuracy, it is necessary to fit all sources at once,

as well as the detector noise, in the interferometer signal[13].

In order to help validate various software analysis suites, the LISA Consortium has simu-

lated gravitational wave data as part of the Lisa Data Challenge (LDC)[1]. These simulated

data contain both the original parameters of the simulated sources, as well as the inter-

ferometric signals expected to be received by the spacecraft. These data allow researchers

to check the efficacy of any eventual solution to the global fit problem. For this work I

exclusively use the simulated data in LDC’s “Radler” release1.

1.1 How GLASS and GBMCMC work

The Global Lisa Analysis Software Suite (GLASS) is a prototype code that attempts to solve

the LISA global fit problem using custom Markov Chain Monte Carlo methods. GLASS oper-

ates on essentially a two-level model, with a high-level Markov Chain Monte Carlo (MCMC)

sampler which operates several individual lower-level MCMC samplers which correspond to

each source type[13].

The top level MCMC uses a blocked sampling scheme where a block of parameters of

the fit are allowed to vary in each iteration, while holding the other parameters fixed. The

sampler then cycles through which block is allowed to change. Each block is its own MCMC

sampler. A typical block will search for a particular source type, perhaps in a particular

frequency range. A core idea of the GLASS architecture is that the individual block MCMC

samplers are essentially independent. They can each use their own data representation of

the LISA GW signal, model distinct GW or noise sources, and define their own likelihood

functions. These individual blocks can therefore be developed and tested independently.

1LDC1-4 GB v2.hdf5 in particular.
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The focus of this work is on extending GBMCMC. GBMCMC is an individual block sampler

which models the GW signals from UCBs in a narrow frequency band and the confusion noise

which arises from unresolvable background UCBs in that same frequency band. Running

the full GLASS suite is computationally intensive, and results presented here are exclusively

from GBMCMC.

GBMCMC when operated separately from GLASS produces posteriors for UCB sources and

a noise model. Posteriors for the UCB sources and noise model are then post-processed

into a catalog of likely sources[14]. Within GBMCMC, and in the resulting catalog, UCBs

were parameterized by a vector that includes their principle frequency f0, its rate of change

ḟ , the amplitude of the gravitational wave A, and parameters describing the sky location,

orientation, phase, and frequency rates of change. Prior to this work, GBMCMC incorporated

priors on sky location and signal-to-noise ratio (SNR) in order to perform an MCMC search

in this parameter space using a Bayesian target function[14].

1.2 Bayesian Distance Prior

A catalog of UCBs parameterized by amplitude A is useful for gravitational wave data

analysis, and helps with the problem of UCBs being a confusion signal to other sources;

however, as a data product intended for astrophysical study, a catalog of UCB sources

parameterized by GW amplitude is less useful. UCBs in the Milky Way are the result

of stellar formation and evolution processes, as well as galactic dynamical processes. The

models we have for their formation and abundance are framed in terms of their physical

properties rather than their gravitational wave emissions.

In an idealized non-interacting2 UCB A is a function of principle frequency f0, chirp mass

Mc, and luminosity distance DL. Additionally, the frequency change due to gravitational

waves is a function of Mc and f0. These relations give us a path for determining physical

parameters of an object from the gravitational waves. Attempts have already been made to

2The interacting case is covered in chapter 2
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marginalize posteriors from GBMCMC over priors in DL and Mc in order to produce a catalog

with these physical parameters[10, 8].

This approach of post-processing in a physical prior has the weakness that the search has

already occurred using an prior on SNR, which functions as an implicit prior on gravitational

wave amplitude and other parameters[12]. Though the effects of a well-chosen SNR prior

appear to have very little influence on the sources found [14, 12], such a prior is nonphysical

and its influence is nontrivial to remove from the posterior samples, if possible at all.

The goal of this work is to perform a more physically motivated MCMC search in GBMCMC

by incorporating prior information on DL from a model of the galaxy, and building the

capability to add prior information on Mc and ḟ to GBMCMC in future work. In order to

incorporate this prior information, GBMCMC has been modified to search in a different param-

eter space, described in chapter 2. Chapter 3 reviews how detailed balance is achieved in

the trans-dimensional MCMC algorithm in use by GBMCMC. Modifications to proposals and

priors are described in chapters 4 and 5 respectively. Chapter 6 presents the results of these

modifications, and chapter 7 concludes with a discussion of possible future work.
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Chapter 2

PARAMETERS

In GBMCMC gravitational waves from ultra-compact binaries are parameterized by the

following parameters:

• f0, ḟ The frequency of the gravitational wave at start of observations, and its time

derivative.

• A The amplitude of the gravitational wave at the detector

• θ, ϕ The latitude and longitude angle in ecliptic coordinates of the source.

• ι, ψ Inclination and polarization of the source UCB to the ecliptic plane.

• ϕ0 Phase of the gravitational wave at start of observations.

Physically, UCBs have a chirp mass Mc and a luminosity distance DL, which together

determine the relationship between the underlying engine of gravitational wave emission

and the gravitational waves received at earth. This relationship is very similar to luminos-

ity/distance relationships used in optical astronomy. All other things being equal, sources

which are farther away contribute less gravitational wave amplitude. The chirp mass (Mc) is

a combination of the masses of the two binary objects where Mc = (m1m2)
3/5(m1+m2)

−1/5,

and serves a similar role in gravitational wave analysis to that of reduced mass in analysis

of atomic systems.

The source of the ḟ parameter comes from two categories of phenomena. The UCB is

emitting gravitational waves, which will tend to increase its orbital frequency (ḟgr). There
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also may be some mass transfer, or other feedback occurring between the two orbiting objects.

Depending on the exact process involved, this may increase or decrease the orbital frequency.

As an example, AM CVn systems are thought to have mass transfer that can decrease or

increase the orbital frequency over time [17]. This astrophysical contribution from all sources

of frequency change other than ideal gravitational wave emission is ḟastro. The parameters

used in this work treat ḟ = ḟgr + ḟastro to keep generality with these interacting binary

sources that we expect to appear in LISA observations.

Prior to this project GBMCMC used {f0, θ, ϕ, ι, ψ, ϕ0,A, ḟ} as the search space for each

gravitational wave source. The parameter space in this work must necessarily include DL

and Mc, as well as ḟastro in order to incorporate physically motivated priors in the search.

The transform between {...,A, ḟ} and {..., DL,Mc, ḟastro} parameterizations is possible via

the following relationships[15, 9]:

A(f0, DL,Mc) =
2

DL

(
GMc

c2

)5/3(
πf0
c

)2/3

(2.1)

ḟ(f0,Mc, ḟastro) =
96π8/3

5

(
GMc

c2

)5/3(
f0
c

)11/3

+ ḟastro (2.2)

This physical parameter space is degenerate on account of the additional degree of freedom

in the {..., DL,Mc, ḟastro} representation. The left side of figure 2.1 shows this degeneracy as

curves of constant amplitude plotted in Mc and DL, at a frequency of f0 = 3.4mHz. While

the right-hand graph shows a similar relationship between chirp mass and ḟGR for a range

of principle frequencies in the LISA band.

The left side of figure 2.1 is the essential distance/luminosity relationship for UCB sources.

The right-hand graph illustrates the speed at which the orbital period of an ideal UCB

changes for a given chirp mass and initial frequency independent of amplitude. It is expected

from general relativity that detached binaries will exactly meet this criteria, while binaries

with mass transfer or feedback dynamics will differ from this relationship. The unit choice

on the right-hand graph places some limits on how precisely the frequency of a UCB must be
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Figure 2.1: Diagram of distance/mass relationship for constant amplitude (left) and ḟGR vs
mass for constant frequency (right).

known in order to begin to apply such an analysis. In short, the frequency must be known

well enough and over a long enough observation time that its derivative can be characterized,

and this is less constraining for higher frequency sources, and higher chirp masses.

In terms of implementation, this modification to allow GBMCMC to operate in a different

parameter space was time-consuming because it was necessary to maintain compatibility

with the use of a second frequency derivative parameter (f̈) as an optional mode in GBMCMC,

as well as maintain compatibility between GBMCMC and GLASS. The implementation therefore

had to cover 4 possible parameter sets (two described above, plus each with f̈). This in turn

required GBMCMC and GLASS code to use named constants as parameter referents rather than

integers. Because the code is written in C, this change required additional bookkeeping to

maintain performance1. It also included the error-prone process of modifying every parameter

access across the entire codebase2.

1gb params.h contains this bookkeeping system.

2All of the modifications to GBMCMC and GLASS used in this work can be found at
https://github.com/mtauraso/ldasoft/tree/Tauraso-Thesis
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Chapter 3

TRANS-DIMENSIONAL MCMC FOR UCBS

This is a review of the broad strokes of the detailed balance for a Markov Chain Monte

Carlo process, focusing on the Metropolis-Hastings algorithm, and its trans-dimensional

generalization, the Reversible Jump algorithm[5]. The focus is on drawing a connection

between the gravitational wave source parameter finding problem as implemented in GBMCMC

and the detailed balance condition that is at the heart of why MCMC algorithms work.

The majority of this explanation can be found in a more measure-theoretic form in Chapter

6 of [6] as well as in Section 3 of [5]. I have attempted to translate the explanation to

the language of multi-variable calculus so that the workings of it are accessible without

understanding measure theory. I have also attempted to make explicit the link between

the Bayesian formulation typical in the sciences, and the abstract notation typical in the

mathematical literature.

3.1 Detailed Balance

What we’re trying to find is a set of parameters such that the gravitational wave signal

defined by those parameters best matches the gravitational wave signal from the LDC data.

In order to do this, we want to get a probability distribution defined over the parameter space,

which peaks at the most likely parameters. Our parameters are a vector x =< f0, θ, ϕ, ... >.

This vector is assumed to live in a flat Cartesian phase space such that dx ≡ df0dθdϕ... .

Given the observed signal d, the probability distribution that peaks at our ideal parameter

values is the posterior π(x) ≡ P (x|d). We don’t care about the normalization of this function.

Any constant times π(x) will do for our purposes, because we most care about where in the

phase space of x it has a maximum and how wide that maximum is.
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Bayes’ theorem tells us that we can essentially reverse the order of a conditional proba-

bility expression at the cost of a fraction between the two probabilities on either side of the

bar. For our posterior,

π(x) = P (x|d) = P (d|x)P (x)
P (d)

. (3.1)

When our data d are known, P (d) is a constant factor, so by using our constant factor

flexibility in π we can simply redefine π(x) ≡ P (d|x)P (x). We can equivalently view this

function as the product of the prior for our parameters, P (x) and the likelihood L(x) ≡

P (d|x). The calculation of the likelihood for a given gravitational wave signal given some

parameters is outlined in [14].

We’re going to approximate π(x) using a Markov process. At each step of the process

we generate a new set of parameters x′ using the prior set of parameters x as input. This

process will ultimately generate a chain of values. The chains created by this process have a

recurring probability distribution Q(x,x′), defined as the probability of x′ appearing given

x in the previous step of the chain. Q(x,x′) is called the kernel of the Markov process.

We want π(x) to be a fixed point of this process, such that if you start with a set of chain

samples having distribution π(x), continuing the process will keep the samples having the

same distribution. We can think of this as choosing an x value from π(x), and insisting that

we have the same probability to get some x′ as we would to do the reverse, drawing x′ from

π(x′) to get get x as the next value in the chain. This detailed balance of the probabilities to

get additional data points is a key property that allows Markov chains to eventually converge

on the posterior distribution.

We can strengthen this notion of detailed balance beyond individual points, to any arbi-

trary region of parameter space. Given some regions A, B in Rn such that x ∈ A and x′ ∈ B

we can write a detailed balance condition as follows:

∫
A

∫
B

π(x)Q(x,x′) dx′dx =

∫
B

∫
A

π(x′)Q(x′,x) dxdx′ (3.2)
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In the Metropolis-Hastings method of MCMC, the x′ is generated by drawing values from

a proposal distribution, with probability q(x,x′) and then accepting that proposal with a

probability α(x,x′). Considering both the cases where x′ is accepted and rejected, the kernel

of a Metropolis-Hastings MCMC can be written as

Q(x,x′)dx′ = q(x,x′)α(x,x′)dx′ + I(x ∈ dx′)s(x) (3.3)

s(x) =

∫
C

(1− α(x,x′))q(x,x′)dx′ (3.4)

The first term in equation 3.3 is the probability that x′ is chosen from q and then accepted.

The second term together with equation 3.4 describe the probability that the new sample

is rejected. In this notation we are considering dx′ as a tiny region in Rn. The indicator

function, I(x ∈ dx′) takes the value 1 whenever x is in dx′, and zero otherwise. In equation

3.4, C is the set of all possible parameters x′ that could have been drawn and were discarded.

Using equation 3.3 we can now rewrite the detailed balance condition in terms of the

functions that define the Metropolis-Hastings process as

∫
A

π(x)

∫
B

q(x,x′)α(x,x′) dxdx′ +

∫
A∩B

π(x)s(x)dx

=

∫
B

π(x′)

∫
A

q(x′,x)α(x′,x) dxdx′ +

∫
B∩A

π(x′)s(x′)dx′. (3.5)

The integrals over A ∩ B on both sides of equation 3.5 cancel, leaving us with a more

compact form describing how the Metropolis-Hastings functions must be related for the

algorithm to balance.

∫
A

∫
B

π(x)q(x,x′)α(x,x′) dxdx′ =

∫
A

∫
B

π(x′)q(x′,x)α(x′,x) dxdx′ (3.6)

The α which satisfies this balance for an arbitrary proposal distribution q and posterior

π can be found by equating the integrands to give the following:
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α(x,x′)

α(x′,x)
=
π(x′)q(x′,x)

π(x)q(x,x′)
(3.7)

In most implementations it makes sense to define the acceptance ratio α as a probability

with a maximum value of 1. In the case where both sides of equation 3.7 are less than 1,

α(x,x′) is simply the right hand side, and α(x′,x) = 1. When both sides are greater than 1,

then α(x,x′) = 1 and α(x′,x) is the reciprocal of the right hand side. This can be written

compactly in the canonical fashion:

α(x,x′) = min

{
1,
π(x′)q(x′,x)

π(x)q(x,x′)

}
. (3.8)

Expanding π(x) into our prior and likelihood functions from earlier gives the form:

α(x,x′) = min

{
1,
P (x′)L(x′)q(x′,x)

P (x)L(x)q(x,x′)

}
. (3.9)

3.2 Transdimensional Jumps

We have so far assumed that x and x′ are concretely the parameters for a single galactic

binary, and using equation 3.9 it is possible to implement a Metropolis-Hastings MCMC

algorithm to find the parameters of a single galactic binary from its gravitational waves.

However, LISA data has multiple overlapping gravitational wave signals. We therefore need

a way to extend this technique to multiple sources.

We are going to keep the same Markov chain idea; however, we are going to permit jumps

that add an entirely new vector of parameters y =< f0, θ, ϕ, ... > for a second source. We are

also going to permit jumps which remove a vector of parameters. In similar fashion to the

single-source MCMC, we’d like for these sorts of jumps to also satisfy the detailed balance

equation.

The mathematical argument that lead to equation 3.8 from the detailed balance condition,

works for any number of dimensions, and even works if A and B do not have the same



12

dimension, so long as they are subsets of Rn. We can exploit this to modify the Metropolis-

Hastings idea to create jumps between dimensions.

The rule for jumping dimensions is that we generate a random vector u from a probability

density g(u). The new state is then generated by a function h(x,u) = x′. We then accept this

x′ based on an acceptance ratio α(x,x′), similar to the old Metropolis-Hastings process. The

process of generating a new state vector must be reversible by generating a random vector1

u′ from a probability density g′(u′), and using a function h′(x′,u′) = x to reconstruct the

original state.

We also require that the transformation functions h and h′ be differentiable, and that

the total dimension of (x,u) and (x′,u′) be equal. Given those constraints, we can write the

detailed balance equation again. Equation 3.10 is the same as 3.2, but the brackets associate

regions A and B with x and x′ respectively to help keep track of the dimension of each space.

∫
A

π(x)

[∫
B

Q(x,x′) dx′
]
dx =

∫
B

π(x′)

[∫
A

Q(x′,x) dx

]
dx′ (3.10)

Following the same logic as before, both sides of equation 3.10 contain a term describing

rejection of the sample, which cancel one another. Considering again equation 3.5, the

cancelled terms are both integrals over A ∩ B. Even now that A and B have different

dimension, the integral over their intersection still cancels. Following the earlier logic through

equation 3.6 gives us the detailed balance in terms of the proposal probability distribution

in a Metropolis-Hastings framework.

∫
A

π(x)

[∫
B

q(x,x′)α(x,x′) dx′
]
dx =

∫
B

π(x′)

[∫
A

q(x′,x)α(x′,x) dx

]
dx′ (3.11)

Note that the bracketed integrals in equation 3.11 are defined in terms of x and x′;

however, the h and g functions allow us to re-write them in terms of u and u′. In equation

3.12 it is assumed that u ∈ U , u′ ∈ V , and U, V ⊂ Rn.

1In GLASS, and in the motivating example of adding a source y, it is common for u′ to be of zero length;
however, it is kept here for generality.
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∫
A

π(x)

[∫
U

g(u)α(x,x′)du

]
dx =

∫
B

π(x′)

[∫
V

g′(u′)α(x′,x)du′
]
dx′

∫
A

∫
U

π(x)g(u)α(x,x′) dx du =

∫
B

∫
V

π(x′)g′(u′)α(x′,x) dx′du′

(3.12)

The dimension match required earlier on (x,u) and (x′,u′) ensures that the two spaces

we’re integrating over in equation 3.12 have the same dimension. We can therefore equate

the integrands by a change of variables. This change of varibles will use the determinant of

the Jacobian, which is ultimately defined by the derivatives of the h and h′ functions. Using

this change of variables, we can write a similar ratio as before to isolate the acceptance ratio

α.

α(x,x′)

α(x′,x)
=
π(x′)g′(u′)

π(x)g(u)

∣∣∣∣∂(x′,u′)

∂(x,u)

∣∣∣∣ (3.13)

Similar logic as before gives the acceptance ratio for a reversible jump MCMC in terms

of our prior P (x) and likelihood L(x) as:

α(x,x′) = min

{
1,
P (x′)L(x′)g′(u′)

P (x)L(x)g(u)

∣∣∣∣∂(x′,u′)

∂(x,u)

∣∣∣∣} (3.14)

In GBMCMC this reversible jump acceptance is used for the birth/death and split/merge

moves, which each add or subtract a source from the model under consideration. GBMCMC

makes several simplifying assumptions within this general formulation. u′ has only a single

uniform variable u′, which is only used to select a source to remove. This choice means u

must be one larger than y to balance dimensions. For convenience I will keep u and y the

same size and simply call this additional number u′ in both contexts1.

In the case of adding a source, x′ is simply the original parameters x and the newly added

parameters y. The new parameters y are generated exclusively from the random numbers u.

1GBMCMC doesn’t bother generating u′ in the creation case, because the number would be thrown away,
and never contribute to the calculation. It is only important to track here because it’s derivative appears
in the Jacobian
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Therefore the functions h and h′ serve only to scale u to astrophysical parameter ranges. As

a result of this simplicity, the only meaningful derivatives in the Jacobian are ∂y
∂u
, which are

simply a diagonal matrix of scale factors. The Jacobian determinant simplifies as follows:

∣∣∣∣∂(x,y, u′)∂(x,u, u′)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
∂x
∂x

∂x
∂u

∂x
∂u′

∂y
∂x

∂y
∂u

∂y
∂u′

∂u′

∂x
∂u′

∂u
∂u′

∂u′

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1 0 0

0 ∂y
∂u

0

0 0 1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∂y∂u

∣∣∣∣ (3.15)

If we define a proposal probability density qnew(y) for the new source parameters, and

insist it be normalized, then we can equate it with the normalization condition for g giving

us
∫
g(u)du = 1 =

∫
q(y)dy. Changing variables and equating these integrands allows us to

see that

q(y)

∣∣∣∣∂y∂u
∣∣∣∣ = g(u) (3.16)

This result can be substituted into the RJMCMC acceptance ratio from earlier. If we

also rewrite the prior P (x′) = P (x)P (y) we can recover the form used by GBMCMC (formula

11 in [14]).

α(x,x′) = min

{
1,
L(x′)P (y)

L(x)q(y)

}
(3.17)
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Chapter 4

PROPOSALS

GBMCMC relies on both fixed and trans-dimensional MCMC steps to choose a source, relying

on the same proposals to both propose new sources for consideration in the trans-dimensional

(RJMCMC) steps, and to propose changes to existing sources in fixed-dimensional MCMC

steps. For proposal methods which are used in both a trans-dimensional and a fixed context,

the draw procedure is approximately the same; however, the assembly of the acceptance

ratio differs slightly between the two cases. Table 4.1 contains an overview of the proposal

cocktail in GBMCMC. Each proposal has a probability to be chosen during a particular MCMC

or RJMCMC iteration. It should be noted as well that 100 MCMC iterations occur for every

RJMCMC iteration in GBMCMC.

Proposal
MCMC

probability

RJMCMC

probability

Modification

scope

uniform draw 0.1 0.2 large

F-statistic draw [3, 7] 0.2 The rest small

GMM/COV Draw (optional) 0.2 0.2 trivial

Fisher Matrix [11] The rest 0.0 large

FM shift 0.1 0.0 trivial

ψ-ϕ0 jump 0.2 0.0 trivial

Table 4.1: Proposals by weight and scope of modification to implement distance prior

Lines in table 4.1 where the weight is shown as “The rest” indicate that at runtime that

proposal has a probability to be run of 1 minus the sum of all proposals in the column. The set
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of proposals cannot be known until runtime because the Gaussian mixture model/covariance

matrix (GMM/COV) draw proposal is not always used. The GMM/COV draw proposal

uses a earlier run of GBMCMC to inform a subsequent run and enhance convergence[14, 10]. It

is important to note that the F-statistic draw proposal and the Fisher matrix proposal have

much of the weight and are the most critical proposals to the search.

The overall change in parameter space required several proposals to be updated. The

GMM/COV draw, FM shift, and ψ-ϕ0 jump proposals did not require significant modification

because they function similarly in both parameter spaces; however the uniform and F-statistic

draws needed to be modified to draw from the 3-D volume defined by the new parameter

space. The Fisher Matrix became singular in the new parameter space, so required major

modification.

4.1 Uniform and F-Statistic Draw

The F-statistic and uniform draw proposals together cover 80-100% of RJMCMC proposals

in any run of GBMCMC. They both rely on uniformly drawing all parameters; however the

F-statistic draw takes the additional step of rejecting some samples based on an F-statistic

evaluated over the data as described in [3]. The uniform draw used by both of these proposals

is correct for chirp mass (Mc), and astrophysical frequency change (ḟastro); however, applied

to distance (DL) it creates some problems.

Drawing distance uniformly would preferentially propose locations that are not uniformly

distributed over the search volume in physical space. GBMCMC would preferentially search the

outer boundaries of the bounding sphere where it is sensitive, and would have a very small

chance to find sources in the galaxy.

The solution to this issue is a distance draw probability density made up of two probability

density functions defined over the spherical search space. The two density functions are

f(r), which has constant density per unit volume, and g(r) which has constant density over

coordinate r. r = ⟨DL, θ, ϕ⟩ is a point within the search space, a sphere of radius R centered

on earth. The combined probability density function h(r) is defined in equation 4.1, with
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the parameter a ∈ [0, 1)1 defining the relative weight of the two functions.

f(r) =
1

4π

3

R3
g(r) =

1

4π

1

r2R
h(r) = (1− a)f(r) + (a)g(r) (4.1)

For the purposes of drawing only r coordinate, the common factor of (4π)−1 can be

ignored because it is evaluated by the draw functions for ϕ and θ, which are themselves

drawn uniformly over solid angle. Therefore the code that draws DL must only evaluate the

radial factor of h(r). This factor can be written entirely in terms of the coordinate r as:

hradial(r) =
1

R

[
(1− a)

3

R2
+
a

r2

]
(4.2)

hradial(r) has normalization condition
∫ R

0
hradial(r)r

2dr = 1, which follows from f(r) and

g(r) being normalized inside a sphere of radius R about the origin. Considering hradial(r)r
2

as a 1-dimensional probability density function (PDF) in coordinate r means that drawing

a location in space from h(r) can be reduced to isotropically choosing a sky location, and

then drawing r according to2

hdraw(r) =
1

R

[
(1− a)

3r2

R2
+ a

]
(4.3)

Equation 4.3 demonstrates the need for two functions in the initial 3-dimensional proposal

density. Recall that the first term in hdraw arises from the uniform-in-volume density function

f(r) = 1
4π

3
R3 . If we set a = 0, only f(r) will contribute probability, and hdraw(r) = 3r2/R3.

For r coordinate very near the earth, this proposal distribution lacks support. The result for

a = 0 is a cutoff in the search where near sources are not identified as being near earth in the

posterior. Introducing g(r) is a remedy that provides support in the proposal distribution

that allows the MCMC to explore sources near earth.

1a in this section is defined by DIST UNI DRAW in GBMCMC and is set to a = 0.2. Section 6.3.1 contains
discussion of this choice.

2ln(hdraw(r)) is calculated by distance draw logP() in GalacticBinaryProposal.c
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In practice, hdraw is used in a rejection sampling algorithm where each iteration compares

the PDF value to a random value in the range [0, 1), accepting when the PDF is less than the

random value. The rejection rate of this algorithm is minimized when the PDF’s maximum

value is 1. The maximum value hdraw reaches is 3−2a
R

. Therefore, the rejection sampling

algorithm uses equation 4.43 to minimize the rejection rate.

Paccept(r) =
1

3− 2a

[
(1− a)

3r2

R2
+ a

]
(4.4)

4.2 Fisher Matrix Proposal

The Fisher matrix proposal in GBMCMC works by proposing jumps in parameter space with

a randomly selected distance along the eigenvectors of the Fisher information matrix of the

likelihood function. Near the correct parameter values, it can be shown that the likelihood

surface ought to take on a multivariate Gaussian character, which is parameterized by the

Fisher information matrix[4]. The exact implementation is approximate, and relies on cor-

rectly scaled jumps along the eigenvectors of the Fisher information matrix. The result is

an efficient MCMC proposal near likelihood maxima[11].

In the new parameter search space {..., DL,Mc, ḟastro}, the nine search parameters are

now a degenerate basis of the 8-dimensional space that defines the gravitational wave tem-

plate for an individual source. The Fisher matrix is therefore singular, and it’s eigenvectors

are no longer a good approximation of this multivariate Gaussian in all possible directions.

The remedy is to calculate the Fisher matrix three times, once for each possible pair of the

three newly introduced parameters. When the distance prior is in use, the Fisher matrix pro-

posal computes jumps in the same manner, but has a uniform probability to choose among

the three Fisher matrices.

A motivation for this scheme can be seen by considering Fisher information as the natural

metric of an information manifold [18]. Any possible parameterization of a gravitational wave

3Paccept(r) is calculated in distance draw P() in GalacticBinaryProposal.c
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is simply a different chart over this same manifold. So long as our choice of chart does not

have a singularity near to the point the MCMC is considering, one chart is as good as the

next. In practice the code detects singular matrices and does not use this proposal mechanism

in areas of parameter space where one of these charts is singular.
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Chapter 5

DISTANCE PRIOR

This section gives an overview of the construction of the distance prior. The core idea is

to extend GBMCMC’s notion of a prior on the sky to a prior on both sky location and distance

for these sources.

5.1 Sky Prior

GBMCMC originally incorporates a prior on the {θ, ϕ} sky location. This prior is based on

an exponential disk model of the galaxy, which is computed and projected on to the sky

using an MCMC integration scheme. A uniform contribution is then added to every sky

direction so there is prior support for every direction in the sky[14]. The distance prior re-

uses this galaxy model, and the overall approach, with some small modifications described in

the next section. The probability density function for the galaxy model in galactic (x, y, z)

coordinates:

Pgalaxy(x, y, z)
1 = Pbulgee

−r2/R2
bulge + (1− Pbulge)

e−u/Rdisk

cosh2(z/Zdisk)
(5.1)

In equation 5.1, r =
√
x2 + y2 + z2 is the distance to the origin, and u =

√
x2 + y2.

In calculating the sky prior, a lattice of 200x200 bins is constructed over the full range of

cos(θ) ∈ [−1, 1] and ϕ ∈ [0, 2π) such that each bin contains the same solid angle. An MCMC

integration scheme is used to evaluate Pgalaxy at each lattice point.

The MCMC integration searches a volume of 100x100x32 kpc centered on the center of

the Milky Way, using Pgalaxy(x, y, z) as the target function for the MCMC. The resulting

1The constants Pbulge = 0.25, Rbulge = 0.8kpc, Rdisk = 2.5kpc, and Zdisk = 0.4kpc are tunable parame-
ters of the galaxy density model, and were not altered for this work.
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chain of (x, y, z) values is then mapped to (ϕ, cos(θ)) bins, corresponding to where each

value appears in the sky from earth. The counts in the (ϕ, cos(θ)) bins are then normalized,

and the uniform contribution is added to produce a lookup table. In the total sky prior the

uniform contribution has weight 0.1, and the galaxy model portion has weight 0.9.

5.2 Distance Prior

The distance prior is implemented using the same Pgalaxy function used for the sky prior,

combined with an isotropic probability density to give prior support over all sky angles.

Unlike the MCMC scheme in use for the sky prior, the distance prior is calculated directly

for every spherical volume element2 in a sphere around earth with 200 subdivisions in each

of DL, cos(θ), and ϕ. The maximum radius of this bounding sphere is calculated from the

LISA noise sensitivity curve in a manner detailed in section 5.3. Integration inside the same

bounding sphere is used to normalize the overall probability density.

The distance prior also has an isotropic component analogous to the uniform component

present in the sky prior. The motivation for this is similar, to provide some prior support to

find sources not in the galactic plane. The isotropic component of the prior uses the volume

probability density function:

Puni = (r2 + a2)−1 (5.2)

where a = 10kpc was chosen to reduce the probability density near r = 0 while providing

tails which are uniformly distributed over sky solid angle and coordinate r. Uniform den-

sity over coordinate r was chosen to prevent prior support near the outer boundary of the

bounding sphere from overwhelming support in the combined prior for sources in the galactic

disk.

The distance prior is a weighted sum of the galaxy based prior and the uniform prior,

2In GBMCMC code the distance prior is often called the volume prior because it is defined over every
spherical volume element in the bounding sphere. The distance prior is enabled with the --volume-prior
command line flag.
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with 0.1 weight given to the uniform prior and 0.9 given to the galaxy based prior3. The

prior density is held in memory as a lookup table4 while GBMCMC runs, similar to the sky

prior.

Early versions of the distance prior used the sky prior’s MCMC integration scheme. This

was too sparse over a 3-dimensional volume, with many volume elements receiving zero visits

from the MCMC. Increasing the iterations of the MCMC was more computationally intensive

than simply calculating the prior in each volume element independently.

Cartesian volume elements and spherical volume elements centered on the galactic center

were also tried. Both of these approaches suffered from anisotropy introduced by the volume

elements themselves, which then spoiled sky location posteriors.

5.3 Search Volume

The radius of the search volume is based on analysis of the sensitivity of the LISA instru-

ment at different frequencies, and the principle that the MCMC search should not consider

sources that are so far away from earth, or with such low mass that they cannot be identified

by the LISA instrument due to noise. Making such an assessment involves combining char-

acterizations of the LISA instrumental noise, confusion noise arising from UCBs below the

detection threshold, as well as prior assumptions about the maximum chirp mass of UCBs.

GBMCMC uses a noise model as part of the overall MCMC pipeline, and the analytic noise

model configured for LDC Radler data is used for the explanation below.

Since GBMCMC runs on a narrow frequency band, first it estimates the minimum noise level

within that band using the existing analytic noise model. Then it calculates a gravitational

wave amplitude A corresponding to an SNR of 5 given the observational time under analysis.

Finally it calculates how far away a UCB source could be and still generate a signal with

amplitudeA. Equation 5.3 is used withMc = 1M⊙, the maximum of the prior on chirp mass,

3The weighting of this component of the prior is set by GalacticBinaryPrior.h:VOL PRIOR UNI.

4Running GBMCMC with the --verbose option will dump the raw sky or volume prior lookup table into
the current working directory.
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and at the maximum frequency in the analysis band to determine the maximum distance5.

DL =
2

A

(
GMc

c2

)5/3(
πfmax

c

)2/3

(5.3)

The relationship between this maximum distance along with frequency and observation

time is shown in figure 5.1. The “knee” in the power law relationship shown is caused by

the trough in the LISA noise curve around 5 mHz. Greater noise above 5mHz limits the

distance that LISA can hear this prototypical loudest source. The waviness in the power

law portion of figure 5.1 below 5 mHz is primarily the result of the confusion noise from

non-resolvable UCB sources. The tick upward at the high end of frequency is a resonance of

the interferometer model in use.

The curves in figure 5.1 are somewhat involved to calculate because they incorporate one

of many possible models of LISA noise. Below 6 mHz the following approximate power law

expression can be used to derive the distance with fewer steps.

Rmax = 70 (Tobs + 1)

(
f

6mHz

)1.4(
kpc

yr

)
(5.4)

The original motivation for finding this approximation was to estimate the size of the

bounding sphere for the volume prior in a computationally efficient manner; however, it is too

inaccurate for this purpose. Underestimating the bounding sphere radius risks not exploring

spatial volume that could contain observable sources. Overestimation wastes computational

resources exploring volume where GBMCMC mathematically cannot find any sources due to its

settings and internal noise model. This wasted time was expected to compound at larger

distances. This approximation also lacks robustness to the various ways that GBMCMC can be

configured with a novel model of LISA noise. I therefore present equation 5.4 only as a path

to an order of magnitude estimate for the cutoff distance.

5This calculation occurs in GalacticBinaryPrior.c:set search volume()
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Figure 5.1: Cutoff radius versus frequency for the bounding sphere of the volume prior
showing dependence on frequency and observation time.
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Chapter 6

RESULTS

In understanding these results it is important to note that GBMCMC uses a parallel tem-

pering scheme, where ‘hot’ and ‘cold’ chains are calculated concurrently. The chains used

for the results below are the coldest chains, which are expected to be the best estimators of

UCB parameters. GBMCMC uses the number of central processing units (CPUs) available at

runtime to determine how many parallel chains will be run. For all of the results below 5

AMD EPYC 9654 CPUs were used for each run on the UW Hyak compute cluster.

6.1 Detailed Balance Testing

As a consistency check of the new distance proposal it is necessary to understand empirically

whether or not it is biasing the search. GBMCMC can be run in a mode1 where likelihood is

set equal to 1. In this mode the posteriors of the MCMC search are only a result of the

priors combined with the aggregate statistical biases present in the proposals. For GBMCMC the

existing proposals introduce some blurring of the priors, as the algorithm explores. The result

is that when the algorithm is run in this detailed balance testing mode, the posterior only

retains some shape of the prior; however, as a cross-check we should expect some agreement

with the prior for a properly functioning search.

An example of this effect is visible in figure 6.1, showing the prior and posterior for sky

location when GBMCMC is run without any of the new code introduced in this work. The yellow

and blue region in the upper part of figure 6.1 comes from the galaxy model. On the right is

the prior for reference with the posteriors on the left. The lower half of figure 6.1 shows the

same plots, but with the distance prior code enabled. The distance prior is far less efficient

1The --prior command line flag enables this mode.
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Figure 6.1: Sky location posterior and prior in sky prior mode (top) and distance prior mode
(bottom).

at sampling when likelihood is removed from the MCMC algorithm, so the lower graph in 6.1

took ∼ 20 times as many MCMC iterations to produce as the upper graph. This inefficiency

is less prominent when likelihood is part of the search, mostly because without likelihood the

distance prior algorithm has an additional dimension of search space, and therefore a greater

volume to explore overall. The thinner posterior distribution in figure 6.1 is also explained

by this same effect. The MCMC proposals have freedom to blur the galaxy distribution

along distance as well as sky location, so sky location posteriors appear more coherent.

When run with the sky location prior, GBMCMC originally drew source amplitude by using

an SNR prior combined with the noise model[14]. In volume prior mode, the draw described

in section 4.1 is used instead of the SNR prior. Figure 6.2 shows the difference in the
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posteriors due to this change. In sky prior mode, the shape of the posterior substantially

matches the SNR prior. In volume prior mode, the posterior distribution does not match

the SNR prior, because the SNR prior is not in use.

Figure 6.2: Amplitude posterior for sky prior mode (left) and volume prior mode (right)
compared to amplitude from SNR prior. SNR prior has been shifted to account for the
GBMCMC noise model during the run.

In figure 6.2 the tendency for GBMCMC in volume prior mode to search a larger search

space is also visible in the peak location of the posterior. The peak at lower amplitude in

volume prior mode is a result of the distance proposal spending more time exploring the

outer volume of its bounding sphere. The most common source accepted is lower amplitude

because it is farther away.

Posteriors in distance can also be compared to the distance prior. Figure 6.3 has a

comparison for all posterior points across the sky. There is a similar flattening out of the

spike in the distance prior as occurs in the sky location histograms. The posterior is also

influenced by the uniform nature of the distance proposal function in the tail. The uniform

volume density drawn on figure 6.3 is normalized to be comparable to both the prior and

posterior to illustrate this influence visually.

The distance component of the galaxy prior has different shapes in different sky directions.

Figure 6.4 integrates the posteriors over different sky directions (highlighted in red) to show
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Figure 6.3: Distance posterior and prior in distance prior mode.

the relative agreement between the galaxy prior and posterior samples.

Figures 6.3 and 6.4 show some additional important characteristics of the volume pro-

posal. At distance DL = 0kpc there are consistently posterior samples. Without the contri-

bution of the g(r) portion of the draw function, which is uniform in coordinate r rather than

volume, there are not posterior samples at 0 kpc. Additionally, there are posterior samples

all the way out to the edge of the bounding sphere. This effect is due to a combination of

the isotropic portion of the volume prior and the uniform in volume piece of the proposal

distribution.

6.2 Convergence

GBMCMC uses an adaptive scheme to gauge the length of the burn-in process of the MCMC

search. In summary, sufficiently large changes to the likelihood result in the program restart-

ing from the beginning. This process is managed with an iteration counter. For an MCMC

run with a target number of iterations n, the counter starts at −n and counts up. If like-

lihood changes significantly while the counter is negative, the counter is reset to −n. Only

posterior samples taken when the counter is greater than zero count toward the catalog that

GBMCMC produces. This restart behavior is visible in the iteration count graphs of figure 6.5.

With the distance prior enabled, GBMCMC takes longer to converge, usually requiring n =
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Figure 6.4: Distance posterior and prior in distance prior mode integrated over various
regions.

200000 rather than the n = 100000 in sky prior mode. Figure 6.5 has a visualization of

this effect. In the run shown on the left there is an uptick in the number of UCB sources

found and the likelihood near iteration 350000, where the iteration index is greater than zero.

With a larger value of n this is solved as shown on the right. Given the higher dimensional

and degenerate search space in distance prior mode compared to sky prior mode, a greater

number of MCMC iterations are expected for convergence.

While this comparison to the sky prior mode and the stability of source numbers and
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Figure 6.5: Graphs of iteration index, source count, and log likelihood for GBMCMC in distance
prior mode. A failure to converge (n = 1 × 105) is on the left and convergence is shown on
the right. (n = 2× 105)

likelihood values provide some evidence of convergence, they do not clearly provide evidence

that GBMCMC is converging on the correct target function. This is difficult given that the

target function for a gravitational wave search is unknown. The following comparisons with

simulated data address this difficulty somewhat; however, future work could include more

rigorous tests of the convergence of this distance-prior-based MCMC scheme, similar to those

employed in [11].

6.3 Detection

The posterior chains from GBMCMC must be sent through post-processing in order to create

a catalog of sources. The exact procedure is described in [14], and was not altered for

this work. The catalog code uses the posteriors from GBMCMC as well as the source count

appearing most often in the MCMC search to produce posterior distributions for discrete

sources. The catalog code is also capable of amending a catalog and keeping a history, but

this functionality was not used for this work[14].
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Each posterior sample in an RJMCMC chain contains parameters for multiple UCB

sources. There is no mapping between posterior samples that would reveal if a source pa-

rameter set in each posterior sample corresponded to the same underlying UCB source in the

gravitational wave data. It is therefore necessary to have a procedure to label the sources

found in the underlying data and assign source parameters from the posterior chains to each

found source. Sources found by GBMCMC, and posterior distributions aligned with individual

sources presented in this section have all been generated using this catalog program from

raw GBMCMC posteriors.

6.3.1 Hyper-Parameters

The distance prior and related proposal changes each introduced hyper-parameters to the

MCMC search. The proposal introduced a weight for the uniform-in-r-coordinate g(r) por-

tion of the draw, and the distance prior introduced a smoothing distance of a = 10kpc and

a weight for the isotropic contribution to the prior density. The weights for the prior and

proposal were chosen by examining the number of sources found by GBMCMC over a crowded

frequency band around2 4mHz. In this band of the LDC Radler data, GBMCMC run in sky

prior mode finds 14 sources.

Table 6.1: Sources found in distance prior mode by hyper-parameter choice.

Isotropic prior weight 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1

Uniform r-coordinate proposal weight 0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

Sources detected 1 6 6 6 1 6 13 13

Table 6.1 shows the number of sources found in distance prior mode for each choice of

hyper-parameters. The smoothing distance on the prior isotropic contribution was consis-

tently set to 10kpc. The bold column indicates the value of the hyper-parameters in use

23.9936mHz to 4.0018mHz
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for the other results presented here. For the uniform r-coordinate proposal weight 0.2 was

chosen over 0.3 to minimize any bias introduced to the proposal distribution by setting a

higher value.

6.3.2 UCB Sources

Figure 6.6 shows GBMCMC posteriors by source. Analysis was run over the same crowded 4

mHz band with LDC Radler data as input. The parameters of the simulated LDC sources

are marked with a red x for a detached binary source, and a red circle for an interacting

binary source. Figures 6.7 and 6.8 show corner plots of posteriors for a bright and a dim

source in this same band.

Figure 6.6: Amplitude versus frequency diagram showing injected sources and posteriors in
distance prior mode.
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GBMCMC is good at discerning f0,A, θ, ϕ. For these parameters, the posteriors have the

multivariate Gaussian character we would expect for the bright source, and they are some-

what impacted by instrumental and confusion noise for the dimmer source.

The bright source in figure 6.7 shows very clearly the degeneracy between chirp mass

and distance. The simulated bright source is relatively near earth in the galactic plane, but

not in the direction of the galactic center. Though the source is quite close, without a clear

constraint on its mass, the most likely distance from the posterior is farther away than the

injected source distance. The posterior does constrain the source to being in the galactic

disk due to the distance prior. By way of comparison, the dimmer source in figure 6.8 has

the most likely distance from the posterior near the injected value; however, the uncertainty

is much greater than for a bright source.

The rate of frequency change from non-gravitational wave sources (ḟastro) is not well

constrained by this method. The prior on this parameter is uniform in the current results,

and future work could include adding a physically motivated prior to this parameter. The

vast majority of LISA UCB sources are expected to be detached binaries[16], so a prior

that prefers ḟastro = 0 could potentially improve parameter estimation for bright detached

sources, or simply make the search more computationally efficient.

6.4 Frequency Band Comparison

Much of the analysis and development of the distance prior was performed by searching the

same crowded 4 mHz band in LDC Radler data. I tested several other bands, in order to

ensure that the results in the 4 mHz band were generalizable to other bands. The 3.47 mHz

band was chosen because it harbors an extremely bright interacting galactic binary in the

simulated data, and the 2.31 mHz and 6.01 mHz bands were chosen at random to provide

some balance, and look at performance in regions where the bounding sphere of the search

is significantly larger or smaller. Table 6.2 summarizes these results.
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Table 6.2: Comparison of sources found across several frequency bands.

Frequency band 4 mHz 3.47 mHz 2.31 mHz 6.01 mHz

Bounding sphere radius 49.11 kpc 35.49 kpc 16.47 kpc 115.87 kpc

MCMC iterations including burn-in3 6.02× 105 4.37× 105 4.54× 105 4.12× 105

Sources detected (sky location) 14 11 3 5

Sources detected (distance) 13 10 3 5

Both the 4 mHz and 3.47 mHz fields are crowded, so it is unsurprising that the sky prior

and distance prior modes in GBMCMC find different numbers of sources. Across the board these

support the notion that the volume prior is detecting sources similarly to the sky prior, while

needing more compute time. Comparing the 4 mHz iteration number to the others, the size

of the bounding sphere appears to have a smaller impact on the compute resources necessary

for convergence than how crowded the frequency band is.
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Figure 6.7: Corner plot of distance prior mode posteriors for a bright source in the 4 mHz
band (source 2 in figure 6.6).
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Figure 6.8: Corner plot of distance prior mode posteriors for a dim source in the 4 mHz band
(source 16 in figure 6.6).
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Chapter 7

CONCLUSION

In pursuit of a solution to the LISA data analysis problem for UCBs, I have modi-

fied GBMCMC to accommodate a more physically relevant parameter space for incorporating

Bayesian priors and producing gravitational wave source catalogs. This better aligns GBMCMC

with other astrophysical investigations of UCBs and helps pave the way for future multi-

messenger observations.

The new prior and proposal added three hyper-parameters to GBMCMC. An isotropic prior

weight similar to the sky prior (0.1), a uniform-r-coordinate draw weight (0.2), and a smooth-

ing distance (10 kpc). The first two of these parameters have been investigated by compar-

ing sources detected with the sky and distance priors in a 4 mHz band of LDC Radler

data. Future work could characterize the third hyper-parameter, or further optimize these

hyper-parameters across different bands and simulated data sources.

The necessity of altering the Fisher matrix proposal is also worthy of future investiga-

tion, both for its mathematical underpinnings, and how it performs in helping GBMCMC leave

secondary likelihood maxima. Time1 did not permit any but the most cursory investigation

of this proposal. The slightly sub-par results of the frequency band comparison in section 6.4

could be entirely explained by a subtle inefficiency in this proposal which becomes relevant

in crowded frequency bands.

There is almost certainly room for improvement in GBMCMC’s estimation of distance by this

method. While the degeneracy that DL participates in looms large, more rigorous tests of

convergence, and assessment of GBMCMC’s distance estimates over a larger range of frequencies

and observation times both hold promise. The introduction of a new parameter space to

1...and my merely rudimentary understanding of information geometry...
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GBMCMC opens the door to future investigation of priors on ḟastro and Mc. This may allow

GBMCMC to detect interacting binaries, or better constrain distance estimates.
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